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flux measurements in circuits 
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Received 12 February 1982, in final form 4 May 1982 

Abstract. The magnetic flux sensitivity in electrical circuits is discussed in the time domain. 
It is shown that the quantum electrodynamic uncertainty principle implies that measure- 
ments of the magnetic flux at two different times interfere. Thus, an initial measurement 
of flux, at time t l ,  to within A@(tl)  will induce a random back EMF which will affect the 
uncertainty A@(tr )  of the flux measurement at a later time t2. We derive the ‘interference’ 
rule that A@(tl)A@(t2) 3 (h/2)(G(tl, t2)lr where G(tl ,  f2) describes the transient circuit 
response in flux to a weak current source impulse. As an example, this rule is applied to 
the case of a current-fed, singly connected Josephson weak link to give an expression for 
the minimum measurement uncertainty in the weak link critical current. 

There has been considerable recent interest, both theoretical and experimental, in 
quantum electrodynamic circuits (Widom et a1 1981, Prance et a1 1981). In a previous 
letter (Widom and Clark 1980), measurements of voltage noise (in the frequency 
domain) were discussed in terms of power amplifiers acting as photon counters. Here, 
time domain quantum electrodynamic uncertainty principle restrictions on magnetic 
flux (D measurements will be of interest. The physical picture is as follows. (i) If at 
a time tl  a measurement of the flux @(t l )  in an inductor is made to within A@(tl), 
then the result is a back EMF which by the rules of quantum electrodynamics is 
uncertain. (ii) At a later time t 2 ,  a circuit transient Green function G(t2, t l )  determines 
the effect of the back EMF on the precision A@(t2 )  of the next inductor flux measure- 
ment. (iii) The precise mathematical statement of the time domain uncertainty prin- 
ciple is that 

A@(ti)A@(t2) 3 (h/2)IG(tz9 till, (1) 

where the engineering prescription for measuring G(f2, t l j  as well as the mathematical 
definition will be given in what follows. 

The general mathematical statement of the quantum uncertainty principle asserts 
that if U and h are two physical quantities with a commutator 

[a,  b ]  = ihc, (2a)  

Aa Ab a (h/2)l(c)l. (26) 
As applied to the measurement of magnetic flux in an inductor at two different times, 

then measurements of both a and h interfere with an uncertainty product 
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it is evident from equations (2) that equation (1) holds if G(f2 ,  t l)  is taken to be (Kallen 
1960) 

G h ,  t l )  = (i/h)([Wt2), Wtdl). (3) 

The engineering meaning of G(t2, tl), as defined in equation (3), can now be considered. 
In figure l(a) is shown (schematically) a general measurement circuit for determin- 

ing the flux in an inductor L. The measuring circuit can be both nonlinear and active, 
i.e. it is arbitrary. In figure l (b )  is shown an identical measurement circuit with an 
added current source. If the current source is infinitesimally small, 8I ( t ) ,  then the 
quantum averaged current source contribution to the magnetic flux 8&(t),  over and 
above that which is due to external magnetic flux and the measurement circuit currents 
in figure l ( a ) ,  defines G ( f 2 ,  t l)  as the inductor-measuring circuit transient Green 
function 

Measurement 
circuit 

lo) 

Measurement 
c i rcui t  

Figure 1. To obtain the inductor-measurement circuit transient function G(t2, t l )  for the 
uncertainty principle product A@(tl)A@(tz) 2 (h/2)lG(f2, t l ) l  in ( a ) ,  one must consider an 
identical circuit system with an added current source I ( t )  as shown in ( b ) .  The measurement 
circuit can be both nonlinear and active. 

For the special case of a measurement circuit uniform in time, 

G(f2, ti) = g ( t z  - ti),  ( 5 )  

the measurement circuit-inductor total system can be regarded as having a dynamical 
differential inductance at frequency C 

.a2 

L ( L )  = J g ( t )  eirr dt. 
0 

Presuming dissipation with the finite limits 

L = lim Re L ( o  +io+), 

r = lim [Im L(W + iO+)/wL], 

W - 0  

W - 0  

(7) 

r sets an overall timescale for the decay of the transients via the internal resistance 
R of the measuring device, 

r = (L/R).  (9) 
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For a circuit in thermal equilibrium at temperature T, the symmetrised spectral 
distribution of inductance flux noise obeys the Nyquist theorem 

S@(O) = ( h / 2 ~ )  coth(h0/2k~T) Im L(w +io+), (10) 

so that the transient timescale determines the magnetic flux energy sensitivity (in 
quantum units), i.e. 

(11) ~ ( Y T  = lim ( s @ ( W ) / L )  = (kBT/v)T, 
w - r o  

follows from equations (8) and (10). In the high-temperature region kBT >> ( T ~ / T ) ,  

i.e. aT >> 1, the flux noise on the timescale T may be regarded as classical, while in the 
low-temperature regime kBT<< ( r h / ~ ) ,  i.e. (YT << 1, the flux fluctuations on the time- 
scale T are quantum mechanical. Since equation (11) survives the generalisation from 
thermal temperatures T to Schwinger noise temperatures T* (Schwinger 1960), i.e. 

a = (kBT*/T)(T/h), (12) 
the notion that a << 1 violates the uncertainty principle is often stated but not readily 
proven. As an example of a case where a can be much less than one, consider the 
circuit depicted in figure 2. For a circuit temperature T it is clear from equations (9) 
and (11) that a ~ = ( k ~ T / r ) ( L / h R ) .  Thus, it follows that if T<<(r /kB)hR/L then 
(YT << 1. 

R 

Figure 2. The transient function for a simple RL circuit has a flux energy sensitivity 
haT = (kBTL/rR) which can obey aT c< 1 with an uncertainty product transient 
A@(tl)A@(t2) 2 ( h R / 2 )  exp(-Rlrz - f~l / .L) .  

It is a simple matter to prove uncertainty relations between quantities at given 
times via equation (1). Thus for the RL circuit of figure 2, equations ( 5 )  and (6) apply 
so that 

d t )  = sgn(t)R exp(-ltl/.), (13) 

A@(f2)A@(t l )  3 (hR/2)  exp(-R(t2 - t l ( /L ) ,  tZ  > t l  (14) 

hence 

for such a circuit. 
For nonlinear measuring circuits the calculation of G(t2, t l )  has all of the complica- 

tions inherent to quantum electrodynamic field theoretical photon propagator renor- 
malisations. Some insights into quantum uncertainties can be gained by computing 
G ( t 2 ,  tl) in the one-loop (quasi-classical) approximation. This quantum field theoreti- 
cal version of the WKB method determines the uncertainty product A@(t2)A@(tl)  to 
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lowest order in A .  In practice, the one-loop approximation consists of the evaluation 
of G(t2,  t l)  by treating equation (4) as a classical linear response circuit transient. 

An interesting case in point is the measurement of Josephson critical currents in 
tunnel junctions (Voss and Webb 1981), as shown in figure 3, for strongly dissipative 
superconducting weak links. The current source is set below the critical current I,, i.e. 

(15) 

and AI (when gradually decreased) is considered to vanish when the link undergoes 
a transition to a voltage V = R I ,  carrying state. As the critical current is approached 
the flux must be determined at least to the extent that 

AI = ( I , - I )  > 0,  

A a 2  6 (A2 /8e2) (AI / I , ) .  (16) 

bV 
Figure 3. Conventional RSJ model circuit for measuring Josephson critical currents in a 
strongly dissipative weak link. 

On a timescale short compared with long damping times but long on the scale of 
strongly dissipative rise times, equation (14) holds true in the form 

A@’* ( h R / 2 ) .  (17) 

Equations (16) and (17) yield a quantum limitation on the method of measuring I ,  
outlined above. It is 

(AI / I , )  2 4 ( e 2 / A ) R  (10-3R/ohms). (18) 
Equation (18), which holds only for strongly overdamped weak links, states that for 
a given value of R there is an uncertainty principle restriction on the accuracy to 
which the junction critical current I ,  can be measured. In the example quoted above 
(Voss and Webb 1981) the experimental data are analysed in terms of a WKB model 
of a Josephson junction (Caldeira and Leggett 1981). According to our calculations 
the measured critical current will be set by the experimental value chosen €or R.  It 
is common practice (see Voss and Webb 1981) to equate R with the asymptotic slope 
resistance of the junction at bias currents large compared with I,. At such bias currents 
the internal Josephson frequencies in the junction are comparable to the superconduct- 
ing gap frequency. Such high frequencies mean (i) pair breaking must occur at the 
junction and (ii) due to the finite capacitance of a Josephson tunnel junction the shunt 
conductance of the junction at frequencies - the gap frequency must be very high. 
Both these effects lead us to believe that the asymptotic slope resistance should not 
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be equated with the R of equation (18) for the purpose of predicting the minimum 
measurement uncertainty in I,. In this sense, the quantum limitation on the accuracy 
of measurement of I ,  depends on the method of measurement used. 
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